POZNAN UNIVERSITY OF TECHNOLOGY

EUROPEAN CREDIT TRANSFER AND ACCUMULATION SYSTEM (ECTS)

pl. M. Skłodowskiej-Curie 5, 60-965 Poznań

COURSE DESCRIPTION CARD - SYLLABUS

Course name

Electrical Power Engineering

Course

Field of study Year/Semester

Electrical Engineering 1/1

Area of study (specialization) Profile of study

- general academic
Level of study Course offered in

Second-cycle studies Polish

Form of study Requirements part-time compulsory

Number of hours

Lecture Laboratory classes Other (e.g. online)

20 20 0

Tutorials Projects/seminars

0 0

Number of credit points

5

Lecturers

Responsible for the course/lecturer: Responsible for the course/lecturer:

dr inż. Justyna Michalak

email:justyna.michalak@put.poznan.pl

tel.616652030

Wydział Inżynierii Środowiska i Energetyki

ul. Piotrowo 3A, 60-965 Poznań

Prerequisites

He has knowledge of the basics of electrical engineering and power engineering. It has a basic knowledge of automation in power engineering. It has a basic knowledge of the transmission and distribution of electricity. Can pre-evaluate devices included in the power system. Is aware of the need to expand their competence. Able to work and interact in group.

Course objective

Knowledge of modern energy technologies.

Course-related learning outcomes

Knowledge

1. He has knowledge of the structure of the power system and its component elements

POZNAN UNIVERSITY OF TECHNOLOGY

EUROPEAN CREDIT TRANSFER AND ACCUMULATION SYSTEM (ECTS)

pl. M. Skłodowskiej-Curie 5, 60-965 Poznań

2. He has knowledge about the high-tech power systems and about the devices which are elements of the production, transmission and distribution of electricity

Skills

1. Can analyze the production and transmission of electricity

Social competences

- 1. Is aware of the role of the reliability of the power system for the public
- 2. Is aware of the responsibility for jointly implemented tasks

Methods for verifying learning outcomes and assessment criteria

Learning outcomes presented above are verified as follows:

Lecture

- assessment of the knowledge and skills listed on the written exam,
- continuous assessment for all classes (rewarding activity and quality perception).

Laboratory

- assessment of knowledge and skills demonstrated in the final test,
- scoring tasks sent after class.

Programme content

Lecture

Basic analyzes and regulations in the power system. Rankine's cycle. Harmful phenomena related to the transmission and distribution of energy. Modern electricity generation technologies, including: supercritical power plants and fluidized bed boilers, gas and gas-steam power plants integrated with fuel gasification technologies. Clean coal technologies in power industry: CO2 capture, combustion in pure oxygen. Modern nuclear power plants. Economic and ecological aspects of new technologies.

Laboratory

Discussion of devices for auxiliary needs of conventional power plants and basic measuring devices. Methods of increasing the efficiency of the Rankine's cycle. Regulation of the power unit operation.

Teaching methods

Lecture with multimedia presentation

Laboratory: conducting laboratory exercises on positions in the laboratory

Bibliography

POZNAN UNIVERSITY OF TECHNOLOGY

EUROPEAN CREDIT TRANSFER AND ACCUMULATION SYSTEM (ECTS)

pl. M. Skłodowskiej-Curie 5, 60-965 Poznań

Basic

- 1. Kubowski J., Nowoczesne elektrownie jądrowe. WNT. Warszawa 2010
- 2. Skorek J., Kalina J., Gazowe układy kogeneracyjne, WNT, 2005
- 3. Sikorski W., Szymocha K., Urządzenia pomocnicze elektrowni parowych, Wydawnictwo Politechniki Wrocławskiej, 1981.
- 4. Chmielniak T., Technologie energetyczne, Wydawnictwo Politechniki Śląskiej, 2014
- 5. Nehrebecki L., Elektrownie cieplne, WNT, 1974
- 6. Laudyn D., Pawlik M., Strzelczyk F., Elektrownie, WNT, 2005
- 7. Machowski J., Regulacja i stabilność systemu elektroenergetycznego, OWPW, Warszawa, 2007

Additional

- 1. Celiński Z., Strupczewski A., Podstawy energetyki jądrowej, WNT, 1984
- 2. Poradnik inżyniera elektryka, WNT, Warszawa 2009
- 3. Chmielniak T., Ziębik A., Obiegi cieplne nadkrytycznych bloków węglowych. Wydawnictwo Politechniki Śląskiej. 2010
- 4. Kotowicz J., Elektrownie gazowo-parowe, Kaprint, 2008
- 5. Szczerbowski, R.(red), Energetyka węglowa i jądrowa: wybrane aspekty /Fundacja na rzecz Czystej Energii, 2017
- 6. Marecki J.: Podstawy przemian energetycznych, WNT Warszawa 2014
- 7. Lewandowski W. M.: Proekologiczne źródła energii odnawialnej, WNT, Warszawa 2012

Breakdown of average student's workload

	Hours	ECTS
Total workload	134	5,0
Classes requiring direct contact with the teacher	64	2,0
Student's own work (literature studies, preparation for	70	3,0
laboratory classes, preparation for exam) ¹		

3

¹ delete or add other activities as appropriate